Basics-6

Electronic Spectroscopy

Born–Oppenheimer Approximation

Molecules are collections of electrons and nuclei:

$$H\psi(r,R) = E\psi(r,R)$$

$$H = T_{e}(\dot{r}) + T_{n}(\dot{R}) + V_{en}(r,R) + V_{ee}(r) + V_{nn}(R)$$

$$H_{e} = T_{e}(\dot{r}) + V_{en}(r,R) + V_{ee}(r)$$

... Nuclei move so slowly compared to electrons, so electrons adjust instantaneously to any nuclear motion. $\psi(r, R) = \psi_{r}(r; R) \psi_{r}(R)$

Electronic S - eqn: $H_e \psi_e(r; R) = E_e(R) \psi_e(r; R)$ $H_n \psi_n(R) = (T_n + V_{nn}(R) + E_e(R)) \psi_n(R) = E_n \psi_n(R)$ $\therefore E_{tot} = E_e + E_n; \quad \psi_{tot} = \psi_{el} \psi_{nuc} \quad " | \varepsilon v > "$ * Electronic Schrödinger equation of many electron molecules

$$\hat{H}_{el} = -\frac{\hbar^2}{2m_e} \sum_{i} \nabla_i^2 - \sum_{i,A} \frac{Z_A e^2}{4\pi\varepsilon_0 r_{Ai}} + \sum_{A>B} \frac{Z_A Z_B e^2}{4\pi\varepsilon_0 r_{AB}} + \sum_{i>j} \frac{e^2}{4\pi\varepsilon_0 r_{ij}}$$

-Approximate Solutions of $\hat{H}_{el}\psi_{el} = E_{el}\psi_{el}$:

 $\begin{aligned} \text{molecular orbital (i.e. one electron wavefunction)} \\ \phi_i &= \sum_j \sum_A C_{ij} \phi_j^A \ (LCAO) \leftarrow \phi_j^A : atomic orbital \\ \text{total electronic wavefunction } \psi_{el} &= \psi_{orbital} \psi_{spin} \\ \text{"antisymmetric wrt exchange} &\to Slater determinant" \\ \phi_1(1) \ \overline{\phi}_2(1) \ \phi_3(1) \ \overline{\phi}_4(1).... \end{aligned}$

 $\psi_{el} = |\phi_1(1)\overline{\phi_1}(1)...| = \frac{1}{\sqrt{N!}} \begin{vmatrix} \phi_1(1) \ \overline{\phi_2}(1) \ \phi_3(1) \ \overline{\phi_4}(1)....\\ \phi_1(2) \ \overline{\phi_2}(2) \ \phi_3(2) \ \overline{\phi_4}(2)....\\ \phi_1(N) \ \overline{\phi_2}(N) \ \phi_3(N) \ \overline{\phi_4}(N)....\end{vmatrix}$

Hatree – Fock approximation for closed shell molecules Fock operator \hat{f} "one – electron hamiltonian"

$$\hat{f} = \hat{h} + \sum_{j} \{ 2J_{j} - K_{j} \}$$

$$\leftarrow \quad \hat{h} = -\frac{1}{2} \nabla^{2} - \sum \frac{Z_{\alpha}}{r}; \ J_{j} = "coulomb operator"; K_{j} = "exchange operator"$$

 $m = 2 \quad \sum_{\alpha} r_{i\alpha}, \quad J_{j} = CC$ $molecular \ orbital \ \phi = \sum_{\nu} c_{\nu} b_{\nu} \quad "LCAO"$

$$\hat{f}\phi = \varepsilon\phi \quad \rightarrow \sum_{\nu} \hat{f}b_{\nu}c_{\nu} = \varepsilon\sum_{\nu} b_{\nu}c_{\nu} \rightarrow \sum_{\nu} (f_{\mu\nu} - \varepsilon S_{\mu\nu})c_{\nu} = 0$$

....
$$\rightarrow |f - \varepsilon S| = 0, \ f_{\mu\nu} = h_{\mu\nu} + 2J_{\mu\nu} - K_{\mu\nu}$$
$$\leftarrow h_{\mu\nu} = \langle b_{\mu}| -\frac{1}{2}\nabla^{2} - \sum_{\alpha} \frac{Z_{\alpha}}{r_{i\alpha}}|b_{\nu}\rangle, \ J_{\mu\nu} = \sum_{j} \sum_{\sigma\lambda} \langle b_{\mu}(1)b_{\sigma}(2)| \frac{1}{r_{12}}|b_{\nu}(1)b_{\lambda}(2)\rangle c_{j\lambda}c_{j\sigma}$$
$$K_{\mu\nu} = \sum_{j} \sum_{\sigma\lambda} \langle b_{\mu}(1)b_{\sigma}(2)| \frac{1}{r_{12}}|b_{\lambda}(1)b_{\nu}(2)\rangle c_{j\lambda}c_{j\sigma}$$

"solve iteratively and self-consistently using variational principle" first guess orbital coefficients $c_{j\lambda}, c_{j\sigma}$, etc

 \rightarrow solve Fock matrix \rightarrow new coefficients \rightarrow ...until convergence "Ab initio methods"

Spectra of Diatomic Molecules

- molecular orbital diagram (Oxtoby)

- Symbols of molecular orbitals (diatomic case: $C_{\infty v}$, $D_{\infty h}$)

 $\hat{l}_{z}\phi = m_{i}\hbar\phi$ "types of molecular orbital" $\lambda = |m_{i}| = 0(\sigma), 1(\pi), 2(\delta), \dots l$ $l = 0 \quad s \quad \rightarrow \quad |m_{i}| = 0(\sigma)$ $l = 1 \quad p \quad \rightarrow \quad |m_{i}| = 0(\sigma), 1(\pi)$ $l = 2 \quad d \quad \rightarrow \quad |m_{i}| = 0(\sigma), 1(\pi), 2(\delta)$

- Ground state total electronic configuration (O₂ case): $(\sigma_{1g})^2(\sigma_{1u}^*)^2...(\pi_g^*)^2$ only unpaired electrons characterize electronic states - Total electronic state (use character table): symmetric antisymmetric wrt inversion (E* n LFC) on electronic wavefunction $\pi_g \otimes \pi_g = \Sigma_g^+ \bigoplus [\Sigma_g^-] \bigoplus \Delta_g$ (σ_v in MFC)

- Pauli principle:

 $\psi_{el} \psi_{spin}$: antisymmetric by electron exchange (fermion) $(C_2(y) \text{ in MFC})$ Σ_g^+, Δ_g : symmetric ψ_{el}

$$\rightarrow$$
antisymmetric $\psi_{spin}(S=0): \frac{1}{\sqrt{2}}(\alpha\beta-\beta\alpha)$

 Σ_{g}^{-} : antisymmetric ψ_{el}

 $\rightarrow symmetric \ \psi_{spin}(S=1): \ \alpha\alpha, \ \beta\beta, \frac{1}{\sqrt{2}}(\alpha\beta + \beta\alpha)$ $\therefore \ (O_2 \ case)^{-1}\Sigma_g^+, \ {}^{1}\Delta_g, \ \overset{3}{\Sigma_g^-} \qquad \text{lowest in energy}$ - Angular momentum coupling:

Electron:	orbital AM (L)
	spin AM (S)
Nuclei:	rotational AM (R)
	spin AM (I)
	vibrational AM (V)
\rightarrow Total AM	I = 1 + S + R + I + V
	Important coupling !

"cylindrical symmetry along molecular axis" cf. spherical symmetry for atoms

electron motions couple to bond axis by electric field of nuclei \rightarrow generate magnetic fields \rightarrow spin (S)-orbit (L) coupling occur

Hund's case (a): weak spin-orbit coupling

e.g. molecules w/ light atoms

L, S couple to bond axis \rightarrow "precession" occurs \rightarrow L : not good quantum number \therefore projection QN: Λ , $\Sigma = \text{good QN}$ $\Lambda = 0, 1, 2, \dots; \Sigma = S, S - 1, \dots - S$ total electron AM $\Omega = |\Lambda + \Sigma|$ total AM J = Ω + R (rotation) $|n\Lambda S\Sigma\rangle |\nu\rangle |\Omega JM_J\rangle$

"Molecular term symbol"

$$|^{2S+1}\Lambda_{\Omega}| \longleftrightarrow |^{2S+1}L_{J}(atom)|$$

 $\wedge = 0 \ (\Sigma), \ 1 \ (\Pi), \ 2 \ (\Delta), \ 3 \ (\Phi), \ 4 \ (\Gamma), \cdots$

"Energy splittings"

 $\Delta E = A \Sigma \Lambda \quad \begin{array}{l} A: \ \text{positive} \ (\text{normal}) \rightarrow \text{lower} \ \Omega: \ \text{lower} \ \text{energy} \\ A: \ \text{negative} \ (\text{inverted}) \rightarrow \text{higher} \ \Omega: \ \text{lower} \ \text{energy} \end{array}$

Hund's case (b): medium spin-orbit coupling

"Only L couples to bond axis \rightarrow only \land defined"

 $N = \Lambda + R(rotation)$

total AM J = N + S(spin)

Hund's case (c): strong spin-orbit coupling e.g. molecules w/ heavy atoms

> "L, S strongly couple: $J_a=L+S$ " $\rightarrow J_a$ couple to bond axis: Ω \rightarrow total AM J = Ω + R (rotation)

$${}^{2S+1}\boldsymbol{J}_{\Omega}$$

- Symmetry of energy levels: Parity

$$[\hat{H}, \hat{O}_{s}] = 0 \rightarrow \hat{H}\psi_{\pm} = E_{\pm}\psi_{\pm}, \hat{O}_{s}\psi_{\pm} = \pm\psi_{\pm}$$

Total parity (+/-): symmetry wrt inversion (E*) in lab coordinate $\hat{E}^* \psi(X_i, Y_i, Z_i) = \psi(-X_i, -Y_i, -Z_i) = \pm \psi(X_i, Y_i, Z_i)$ (Hougen) $\hat{E}^*(lab) = \hat{\sigma}_v(mol)$ e.g. $\hat{E}^* \mu(dipole \ moment) = -\mu$ $\therefore \ dipole \ transition : + \leftrightarrow$ cf. $\hat{\sigma}_v \psi_{orbital} = \pm \psi_{orbital} : \Sigma^{\pm} (not \ total \ parity)$

Rotationless parity (e/f):

$$\psi = \psi_{el} \psi_{vib} \psi_{rot}, \ \hat{E}^* \psi_{vib} = \psi_{vib}; \ \hat{E}^* \psi_{rot} = (-1)^J \psi_{rot}$$
$$e: \ \hat{E}^* \psi = +(-1)^J \psi; \ f: \ \hat{E}^* \psi = -(-1)^J \psi$$

gerade/ungerade(g/u) parity: symmetry wrt inversion in MFC

> "only for homonuclear diatomics and electronic orbital wavefunctions"

 $\hat{i}\psi_{el}(x_i, y_i, z_i) = \psi_{el}(-x_i, -y_i, -z_i) = \pm \psi_{el}(x_i, y_i, z_i) + gerade / - ungerade$ (electric dipole transition) $g \leftrightarrow u$

$$\hat{P}_{12}(\psi\psi_{nspin}) = \pm\psi\psi_{nspin} (+:boson / -: fermion)$$
$$\hat{P}_{12}(lab) = \hat{\sigma}_{v}\hat{i}(mol) = \hat{C}_{2}(y) (mol)$$
$$s: \hat{P}_{12}\psi = +\psi; \ a: \hat{P}_{12}\psi = -\psi$$

- Electronic selection rules:

 $\Delta \Lambda = \mathbf{0}, \pm \mathbf{1} \ (e.g. \ \Sigma \leftrightarrow \Sigma, \Pi \leftrightarrow \Sigma, \Delta \leftrightarrow \Pi...)$ $\Delta S = \mathbf{0}, \ \Delta \Sigma = \mathbf{0}$ $\Delta \Omega = \mathbf{0}, \pm \mathbf{1}$ Parity: total parity + \leftrightarrow -; $g \leftrightarrow u$ $\Sigma^+ \leftrightarrow \Sigma^+, \Sigma^- \leftrightarrow \Sigma^- (\because \mu_z : \Sigma_u^+)$

Labeling of electronic states:
(Diatomics) ground state: X (e.g. X ³Σ_g⁻) excited states w / same spins as GS : A,B,C,... (e.g. A ³Σ_u⁺, B ³Σ_u⁻, ...) excited states w / different spins as GS : a,b,c,... (e.g. a ¹Δ_g, b ¹Σ_g⁺, ...)
(Polyatomics): X, A, B,..., a, b,...

- * Vibrational structures in electronic spectra
 - Potential energy curves: C_2 case $GSEC: (\sigma_g 1s)^2 (\sigma_u^* 1s)^2 (\sigma_g 2s)^2 (\sigma_u^* 2s)^2 (\pi_u 2p)^4$ "closed" $X^1 \Sigma_g^+$ $ESEC: ... (\pi_u 2p)^3 (\sigma_g 2p)^1; A^1 \Pi_u, a^3 \Pi_u$

Table 7.6 Electronic transitions observed in C₂

Transition	Names associated	Special region/nm	Source of spectrum		
$b^{3}\Sigma_{g}^{-} \rightarrow a^{3}\Pi_{u}$ Ballik–Ramsay		2700-1100	King furnace		
$A^1\Pi_g \rightleftharpoons X^1\Sigma_g^+$	Phillips	1549-672	Discharges		
$d^3\Pi_g \rightleftharpoons a^3\Pi_u$ Swan		785–340	Numerous, including carbon arc		
$C^{1}\Pi_{g} \to A^{1}\Pi_{u}$	Deslandres-d'Azambuja	411-339	Discharges, flames		
$e^{3}\Pi_{g} \rightarrow a^{3}\Pi_{u}$	Fox-Herzberg	329-237	Discharges		
$D^{1}\Sigma_{u}^{+} \rightleftharpoons X^{1}\Sigma_{g}^{+}$	Mulliken	242-231	Discharges, flames		
$E^1\Sigma_g^+ \to A^1\Pi_u$	Freymark	222-207	Discharge in acetylene		
$f^{3}\Sigma_{g}^{-} \leftarrow a^{3}\Pi_{u}$	_	143–137)	Flash photolysis of		
$g^3 \Delta_g \leftarrow a^3 \Pi_u$	—	140–137 }	mixture of a		
$F^1\Pi_u \leftarrow X^1\Sigma_g^+$	-	135–131	inert gas		

- Franck-Condon principle:

"...electronic transition occurs within a stationary nuclear framework ↔ vertical transition in PES picture"

A-B transition is dominant!

Transition dipole moment
$$(|\varepsilon'v'\rangle \leftarrow |\varepsilon''v'\rangle)$$

BO approxi : $|\varepsilon v\rangle = \psi_{\varepsilon}(r;R)\psi_{v}(R)$
 $\therefore M_{\varepsilon'v',\varepsilon''v'} = \langle \varepsilon'v' | \mu | \varepsilon''v''\rangle \leftarrow \mu = -e\sum_{i} r_{i} + e\sum_{A} Z_{A}R_{A} = \mu_{\varepsilon} + \mu_{N}$
 $= \int_{r_{R}} \psi_{\varepsilon'}^{*}(r;R)\psi_{v'}^{*}(R) \{\mu_{\varepsilon} + \mu_{N}\}\psi_{\varepsilon'}(r;R)\psi_{v'}(R) dr dR$
 $= \int_{R} \psi_{v'}^{*}(R) \left\{ \int_{r} \psi_{\varepsilon'}^{*}(r;R) \mu_{\varepsilon}\psi_{\varepsilon'}(r;R) dr \right\} \psi_{v'}(R) dR$
 $+ \int_{R} \psi_{v'}^{*}(R) \mu_{N} \left\{ \int_{r} \psi_{\varepsilon'}^{*}(r;R) \psi_{\varepsilon'}(r;R) dr \right\} \psi_{v'}(R) dR$
 $= \langle v' | M_{\varepsilon'\varepsilon'}(R) | v'' \rangle + \langle v' | \mu_{N} | v'' \rangle \delta_{\varepsilon'\varepsilon'}$
 $if M_{\varepsilon'\varepsilon'}(R) \approx M_{\varepsilon'\varepsilon'}(R_{eq}),$
 $\therefore M_{\varepsilon'v',\varepsilon'v''} = M_{\varepsilon'\varepsilon'}(R_{eq}) \langle v' | v'' \rangle$
 $= M_{\varepsilon'\varepsilon'}(R_{eq}) S(v',v'') \leftarrow S : overlap integral$
Intensity $I_{\varepsilon'v',\varepsilon'v'} \propto |M_{\varepsilon'v',\varepsilon'v''}|^{2} = |M_{\varepsilon'\varepsilon'}(R_{eq})|^{2} |S(v',v'')|^{2}$
Franck-Condon factor

Example of Vibronic transitions

- Vibrational progressions: $\Delta v = \pm (any integers)$

Figure 7.19 Progressions with v'' = 0, 1 and 2 in the $B^3\Pi_{0_u^+} - X^1\Sigma_g^+$ system of I₂

- Deslandres table:

v'	$v^{\prime\prime}$												
	0		1		2		3		4		5		6
0	64 758	(2145)	62 613	(2117)	60 496	(2092)	58 404	(2063)	56 341	(2037)	54 304		_
	(1476)		(1485)			- 22		(1487)		(1486)		(1487)	
1	66 234	(2136)	64 098		2 2		59 891	(2064)	57 827	(2036)	55 791	(2010)	53 781
	(1448)		(1441)				(1444)				(1443)		(1443)
2	67 682	(2143)	65 539	(2115)	63 424	(2089)	61 335	-			57 234	(2010)	55 224
	(1407)		(1413)		(1414)								(1410)
3	69 089	(2137)	66 952	(2114)	64 838		a a		60 683	(2039)	58 644		
	(1378)		(1382)		(1370)					(1379)			
4	70 467	(2133)	68 334	(2126)	66 208	(2085)	64 123	(2061)	62 062				58 011
	(1341)		(1338)		(1350)		(1343)						(1340)
5	71 808	(2136)	69 672	(2114)	67 558	(2092)	65 466		_	1 1 S	61 365	(2014)	59 351
	(1307)		(1305)		(1303)		(1299)				(1307)		
6	73 115	(2138)	70 977	(2116)	68 861	(2096)	66 765	(2053)	64 712	(2040)	62 672		_

Table 7.7 Deslandres table for the $A^{1}\Pi - X^{1}\Sigma^{+}$ system of carbon monoxide^a

^a Units are cm⁻¹ throughout. Measurements are of band heads, formed by the rotational structure, not band origins. Figures in parentheses are differences; variations in differences (e.g. between the first two columns) are a result of uncertainties in experimental measurements.

Vibrational spacing in excited electronic state Vibrational spacing in ground electronic state - Determination of dissociation energies:

use of Birge-Sponer extrapolation

 $\tilde{\boldsymbol{v}}_{limit} = \boldsymbol{D}_{0}' + \tilde{\boldsymbol{v}}_{0} = \boldsymbol{D}_{0}'' + \Delta \tilde{\boldsymbol{v}}_{atomic}$

- Repulsive states and continuous spectra:

Continuous spectra

 $He_2: (\sigma_a 1s)^2 (\sigma_u^* 1s)^2 \therefore X^1 \Sigma_a^+$ $(\sigma_{o} 1s)^{2} (\sigma_{u}^{*} 1s)^{1} (\sigma_{o} 2s)^{1} :: \sigma_{u} \otimes \sigma_{o} = A^{1} \Sigma_{u}^{+}, a^{3} \Sigma_{u}^{+}$ $H_2: (\sigma_g 1s)^2 \therefore X^1 \Sigma_g^+$ $(\sigma_g \mathbf{1}s)^1 (\sigma_u^* \mathbf{1}s)^1 \therefore \sigma_g \otimes \sigma_u = A^1 \Sigma_u^+, a^3 \Sigma_u^+$ $(\sigma_{\sigma} 1s)^{1} (\sigma_{\sigma} 2s)^{1} \therefore \sigma_{g} \otimes \sigma_{g} = B^{1} \Sigma_{g}^{+}, b^{3} \Sigma_{g}^{+}$

Spectra of Polyatomic Molecules

* Triatomic molecules AH_2 : 1s + (2s, 2p_x, 2p_y, 2p_z) + 1s

Walsh diagram

Labelling of Polyatomics: $\tilde{X}, \tilde{A}, \tilde{B}, ..., \tilde{a}, \tilde{b}, ...$ e.g. $\tilde{X}^{-1}A_1, \tilde{a}^{-3}B_1, ...$

Molecule	Configuration	State	∠ HAH	
LiH ₂ ^a	$(1\sigma_g)^2 (2\sigma_g)^2 (1\sigma_u)^1$	$\tilde{X}^2 \Sigma_u^+$	180°(?)	
	$(1a_1)^2 (2a_1)^2 (3a_1)^1$	$\tilde{A}^2 A_1$	< 180°(?)	
BeH ₂ ^a	$(1\sigma_g)^2 (2\sigma_g)^2 (1\sigma_u)^2$	$ ilde{X}^1 \Sigma_g^+$	180°(?)	
	$(1a_1)^2 (2a_2)^2 (1b_2)^1 (3a_2)^1$	$\int \tilde{a}^3 B_2$	< 180°(?)	
	$(1a_1)(2a_1)(1b_2)(3a_1)$	\tilde{A}^1B_2	$< 180^{\circ}(?)$	
BH_2	$(1a_1)^2 (2a_1)^2 (1b_2)^2 (3a_1)^1$	$ ilde{X}^2\!A_1$	131°	
	$(1\sigma_g)^2 (2\sigma_g)^2 (1\sigma_u)^2 (1\pi_u)^1$	$ ilde{A}^2\Pi_u$	180°	
CH ₂	$(1a_1)^2 (2a_1)^2 (1b_2)^2 (3a_1)^2$	$ ilde{a}^1\!A_1$	102.4°	
	$(1a_1)^2 (2a_2)^2 (1b_2)^2 (3a_2)^1 (1b_2)^1$	$\int \tilde{X}^3 B_1$	134°	
	$(10_1)(20_1)(10_2)(30_1)(10_1)$	$ ilde{b}{}^1\!B_1$	140°	
$NH_2 (H_2O^+)$	$(1a_1)^2 (2a_1)^2 (1b_2)^2 (3a_1)^2 (1b_1)^1$	$ ilde{X}^2 B_1$	103.4° (110.5°)	
	$(1a_1)^2 (2a_1)^2 (1b_2)^2 (3a_1)^1 (1b_1)^2$	$\tilde{A}^2 A_1$	144° (180°)	
H ₂ O	$(1a_1)^2 (2a_1)^2 (1b_2)^2 (3a_1)^2 (1b_1)^2$	$ ilde{X}^1\!A_1$	104.5°	

Table 7.8Ground and excited configurations of some AH_2 molecules

^a The question marks indicate uncertainty, as the molecule is an unknown species.

* H₂CO case:

"12 valence electrons, three σ -bonds, 1π -bond"

ground state: $\tilde{X}^{1}A_{1} \leftarrow ...(1b_{1})^{2}(2b_{2})^{2}$ excited state: $\tilde{A}^{1}A_{2}$, $\tilde{a}^{3}A_{2} \leftarrow ...(1b_{1})^{2}(2b_{2})^{1}(2b_{1})^{1}$ $\tilde{A} - \tilde{X}$ transition: $n - to - \pi^{*}$ transition (weak transition \because forbidden by symmetry) ; blue – shifted by hydrogen bonding

(2b₁)¹ π* electron favor bent geometry : \tilde{A} state : $\phi = 38^{\circ}$ \tilde{a} state : $\phi = 43^{\circ}$

- * Conjugated molecules:
- Hückel MO theory:

 $\hat{H}_{el} = \hat{H}_{\sigma} + \hat{H}_{\pi}, \ \psi_{el} = \psi_{\sigma}\psi_{\pi} \quad \leftarrow assume \quad \sigma - \pi \ separability$ for π - electrons only

$$\begin{split} \hat{H}_{\pi} &= \sum_{k=1}^{n} \hat{H}^{eff}(k) \leftarrow \text{ one-electron picture} \\ \hat{H}^{eff} \phi &= E\phi, \ \phi_{i} = \sum_{j=1}^{n} C_{ij} \chi_{j} \leftarrow \chi_{j} : p_{z} - \text{orbital on atom } j \\ &\sum_{j=1}^{n} C_{ij} \hat{H}^{eff} \chi_{j} - \sum_{j=1}^{n} C_{ij} E \chi_{j} = \mathbf{0} \rightarrow \sum_{j=1}^{n} C_{ij} \langle \chi_{i} | \hat{H}^{eff} | \chi_{j} \rangle - \sum_{j=1}^{n} C_{ij} E \langle \chi_{i} | \chi_{j} \rangle = \mathbf{0} \\ &\sum_{j=1}^{n} \{ \langle \chi_{i} | \hat{H}^{eff} | \chi_{j} \rangle - E \langle \chi_{i} | \chi_{j} \rangle \} C_{ij} = \mathbf{0} \rightarrow \therefore \sum_{j=1}^{n} \{ \hat{H}^{eff}_{ij} - ES_{ij} \} C_{ij} = \mathbf{0} \\ &\text{fmatrix form} \ (\hat{H}^{eff}_{z} - \frac{ES}{z}) \sum_{z}^{z} = \mathbf{0} \rightarrow \text{secular determinant: } |\hat{H}^{eff}_{z} - \frac{ES}{z}| = \mathbf{0} \\ &H \ddot{u} ckel theory \ \hat{H}^{eff}_{ij} = \alpha \ (Coulomb \ integral), \ S_{ij} = \delta_{ij} \\ &\hat{H}^{eff}_{ij} = \beta (adjacent) \ or \ \mathbf{0} (others) \ (resonance \ integral) \end{split}$$

Benzene Case:

$$|\hat{H} - ES| = \begin{vmatrix} \alpha - E & \beta & 0 & 0 & 0 & \beta \\ \beta & \alpha - E & \beta & 0 & 0 & 0 \\ 0 & \beta & \alpha - E & \beta & 0 & 0 \\ 0 & 0 & \beta & \alpha - E & \beta & 0 \\ 0 & 0 & 0 & \beta & \alpha - E & \beta \\ \beta & 0 & 0 & 0 & \beta & \alpha - E \end{vmatrix} = 0$$

 $\therefore E = \alpha \pm \beta, \ \alpha \pm \beta, \ \alpha \pm 2\beta$

Eigenfunctions : Use SALC(symmetry – adapted linear combination) of 6p_zorbitals

$$GSEC: ...(1a_{2u})^{2}(1e_{1g})^{4}; \tilde{X}^{1}A_{1g}$$

$$ESEC: ...(1a_{2u})^{2}(1e_{1g})^{3}(1e_{2u})^{1}; e_{1g} \otimes e_{2u} = b_{1u} \oplus b_{2u} \oplus e_{1u}$$

$$\therefore \tilde{A}^{1}B_{2u}, \tilde{a}^{3}B_{1u}, \tilde{B}^{1}B_{1u}, \tilde{b}^{3}E_{1u}, \tilde{C}^{1}E_{1u}, \tilde{c}^{3}B_{2u}$$

Electronic selection rule: $\Delta S = \mathbf{0},$ $\langle \psi_f | \mu | \psi_i \rangle \neq \mathbf{0} \iff \Gamma(\psi_f) \otimes \Gamma(\mu_{x,y,z}) \otimes \Gamma(\psi_i) \supset A_1$

 $\begin{array}{l} \textit{Benzene}: \ \Gamma(\mu_{x,y}) = E_{1u}; \ \Gamma(\mu_z) = A_{2u} \\ & \tilde{X}^{-1}A_{1g} \rightarrow \tilde{A}^{-1}B_{2u}: \textit{forbidden} \ (\sim 260nm) \textit{ but relaxed} \\ & \tilde{X}^{-1}A_{1g} \rightarrow \tilde{B}^{-1}B_{1u}: \textit{forbidden} \ (\sim 200nm) \textit{ but relaxed} \\ & \tilde{X}^{-1}A_{1g} \rightarrow \tilde{C}^{-1}E_{1u}: \textit{allowed} \ (\sim 185nm) \end{array}$

Vibronic coupling :

* Jahn – Teller, Herzberg – Teller, Renner-Teller effect

- Organic Chromophores: $\pi^* \leftarrow n$ transition $\pi^* \leftarrow \pi$ transition
 - e.g. Carbonyl $\pi^* \leftarrow n$ transition :

Ethylene $\pi^* \leftarrow \pi$ *transition* :

 $\phi_{nb} \sim O_{py}$ $\phi_{\pi^*} \sim \phi(C_{px}, O_{px})$ $\rightarrow \langle \pi^*(x) | \mu_{x,y,z} | nb(y) \rangle = 0$ $\rightarrow \text{ forbidden but relaxed by VB}$

 $M_{\pi^*\pi} \propto \hat{z} (bond axis)$: allowed $(\pi)^1 (\pi^*)^1 : two CH_2's perpendicular$

- Decay behaviors of excited states:

 $\Delta \tilde{v}(cm^{-1}) = \frac{1}{2\pi c} \left(\frac{1}{\tau_r} + \frac{1}{\tau_{nr}} \right)$ $= \frac{k_r + k_{nr}}{2\pi c}$ $\leftarrow \tau_r, \tau_{nr} : lifetimes$ $k_r, k_{nr} : rate \ constants$ (radiative, nonradiative)

Bond length

Coupling w/ pseudo-continuum of S_0 , T_1 :

Internal conversion $(S_1 \rightarrow S_0)$ Intersystem crossing $(S_1 \rightarrow T_1)$

Fluorescence quantum yield:

$$\Phi_{F} = \frac{no. of fluorescence photons}{no. of absorbed photons} = \frac{k_{r}}{k_{r} + k_{mr}}$$
Fluorescence lifetime $\tau_{F} = \frac{1}{k_{r} + k_{mr}}$

Table 7.11 Fluorescence quantum yield $\Phi_{\rm F}$, fluorescence lifetime $\tau_{\rm F}$, radiative, $k_{\rm r}$, and non-radiative, $k_{\rm nr}$, rate constants for the S_1 state of benzene

Vibronic level	$arPhi_{ m F}$	$\tau_{\rm F}/{\rm ns}$	$k_{\rm r}/{ m s}^{-1}$	$k_{\rm nr}/{\rm s}^{-1}$
00	0.22	90	2.4×10^{-6}	8.7×10^{-6}
6^{1}	0.27	80	3.4×10^{-6}	9.1×10^{-6}
$1^{1}6^{1}$	0.25	68	3.7×10^{-6}	11.0×10^{-6}