Basics -7

Lasers and Laser Spectroscopy

Basics of Lasers

* Principles of lasers

*"*Light Amplification by Stimulated Emission of Radiation*"*

Continuous (CW) or Pulsed Lasers

*"*directionality, monochromaticity, brightness, coherence*"*

- Components of lasers:

Active medium (*gas, liquid dye, solid materials*) Pump source (for excitation of medium) Optical resonator (*for light amplification*)

Laser action mechanism:

Pumping Spontaneous Emission Stimulated Emis [→] [→] *sion*

"population inversion $({\mathsf N}_1 > {\mathsf N}_0)$ "

"incoherent, random direction**"**

"coherent, light amplification **"**

(c) Laser action

(a) Equilibrium population

 $I(V, 2L) = I_o(V)e^{2\sigma(V)\Delta N L}$ $\leftarrow \Delta N = N_o - N$ $I(\nu, 2L) = I_{\alpha}(\nu) e^{2\sigma(\nu) \Delta N L}$ *After one round trip* loss factor $e^{-\gamma}$: scattering, absorption by optics,etc $2\sigma(\nu)$ $(\nu, 2L) = I_0(\nu) e^{2\sigma(\nu)\Delta N L}$ $\leftarrow \Delta N = N_1 - N_0$ $2\sigma(\nu)$ $(\nu, 2L) = I_{0}(\nu) e^{2\sigma(\nu)\Delta N L - \gamma}$ \leftarrow loss factor $e^{-\gamma}$: $= I_{\alpha}(\nu) e^{2\sigma(\nu)\Delta N L}$ $\leftarrow \Delta N = N_{\alpha} \therefore I(\nu, 2L) = I_0(\nu) e^{2\sigma(\nu)\Delta N L - \nu}$

Amplification occur if
$$
2\sigma\Delta NL > \gamma
$$

\n... threshold $\Delta N_{th} = \frac{\gamma}{2\sigma L}$

Spectral characteristics: longitudinal, transverse modes

Longitudinal (or axial) modes

 $Transverse$ modes (TEM_{mn}):

"Transverse Electric and Magnetic fields with (m,n) nodal planes (usually use E-fields)**"**

*"…*It is sometimes desirable to obtain a single longitudinal, single transverse mode to do high resolution spectroscopy*…"* Mode competition: (in multimode lasers)

Occur when δv (free spectral range) $\leq \Delta v^{homogeneous}$ \rightarrow *needs extra wavelength selection optics* e.g. (i) $He - Ne$ laser (632.8nm), $d = 1$ m $\delta v = 150MHz, \Delta v \sim 30MHz$ *no mode competition* ∴ (iii) $Ar⁺$ laser $\delta v = 150 MHz$, $\Delta v \sim GHz$ *strong mode competit ion* ∴ (iii) dye laser : $\Delta v \sim 10THz$ − *ine luser* (034.8*nm*), *u* = *strong mode competition* ∴

Sin gle mo de lase r:

use intracavity prism, grating (Littrow) or etalon for selecting ^a single mode among mu lti-cavi ty ^m odes * Types of lasers: Gas, liquid, solid lasers

He-Ne Laser (632.8 nm) $2p^5$ 5s $Collision$ $He^* + Ne) \rightarrow Ne^* \rightarrow Ne^* \rightarrow Ne$ Brewster*'*s angle (tanΦ=n, ∼57o) $2p^53p$ 10 $H = -Ne$ $+||\psi|| + |$ $2p^{5}3s$ F 99.5% 99% discharge of 1 torr $1¹S$ $2p^6$ He-Ne mixture(10:1) He Ne

Ar+ Laser (457.9, 488, 514.5 nm)

Discharge of 0.5 *torr* $Ar \rightarrow Ar^{**} \rightarrow Ar^* \rightarrow Ar^*$ Ar^+ 3s²3p⁴4p¹ \rightarrow 3s²3p⁴4s¹: ${}^{2}D_{5/2} \rightarrow {}^{2}P_{3/2}$ (488, 514.5 nm) ${}^{2}S_{1/2} \rightarrow {}^{2}P_{1/2}$ (457.9 nm)

<u>N₂ Laser (337 nm)</u>

$C(v=0)-B(v=0)$ transition: 337 nm Lifetimes: $C(40ns)$, $B(10\mu s) \rightarrow ns$ pulsed operation

Table 9.1 Molecular orbital (MO) configurations and equilibrium bond lengths r_e of N_2

Excimer Lasers (noble gas halides)

Interatomic separation, r -

Discharge Ar* + $\mathsf{F}_2 \rightarrow$ ArF* \rightarrow Ar + F "Pulsed operation"

ArF (193 nm) KrF (248 nm), KrCl (222 nm) XeF (351 nm), XeCl (308 nm) <u>CO₂ Laser: infrared laser</u>

$$
N_{2}(v=1) + CO_{2} \rightarrow CO_{2}(v_{3} = 1) \rightarrow CO_{2}(v_{1} = 1), CO_{2}(v_{2} = 2)
$$

2331 cm⁻¹ 2349 cm⁻¹ 1285 cm⁻¹ 1380 cm⁻¹
9.6 µm 10.6 µm

"Rovibrational transitions**"** P, R-branches occur \rightarrow Line-tunable

> Most intense line: P(22), 10.6 μm

Dye Lasers: Liquid Lasers

Active medium: fluorescent dyes (Rhodamine, Coumarine, etc) in solvents (e.g. EtOH)

Pumping Sources: (CW operation) Ar + laser (usually longitudinal pumping) (Pulsed) flash lamps, pulsed lasers (Nd-YAG, excimer, N₂, etc) (longitudinal or side pumping)

Ruby and Alexandrite Lasers:

Ruby crystal: Cr $_{\textrm{\tiny{2}}}\textrm{O}_{\textrm{\tiny{3}}}$ in Al $_{\textrm{\tiny{2}}}\textrm{O}_{\textrm{\tiny{3}}}$ (693.4, 694.3 nm); three-level Alexandrite: Cr₂O₃ in BeAl₂O₄ (720-800 nm); four level

 Cr^{3+} in O_h field $^{2}T_{2}$ - $^{4}T_{2}$ 7 29 cm^{-1} $R_{2}6x$ Energy Reflector Ruby 694.3nm 720 -800nm (b) (a) Broadens in Alexandrite → Four-level laser

 $({}^{4}T_{2}$ vibronic, ${}^{4}T_{2}$ zero-level, ${}^{4}A_{2}$ vibronic, ${}^{4}A_{2}$ zero-level)

Ti-Sapphire Laser:

Active medium: 0.1% Ti $_2\mathrm{O}_3$ in Al $_2\mathrm{O}_3$

"...lasing occur between energy levels (t₂,e) of Ti³⁺ (3s²3p⁶3d¹) In O_h field coupled to lattice vibrations resulting in band broadening**…"**

- Tunable in 670 **–** 1100 nm wavelength range
- Pumping: (CW, fs pulse laser) Ar⁺ laser (ns pulse) Nd-YAG laser

Nd-YAG Laser: neodymium-yttrium aluminium garnet laser

Active medium: Nd^{3+} (4d¹⁰4f³5s²5p⁶) in Y₃Al₅O₁₂ matrix **"...** lasing occur between ${}^4F_{3/2}$ and ${}^4I_{11/2}$ levels allowed by Crystal field splittings around 1.06μm (1.0648, 1.0612)…"

- Pumping: flash lamp
- High power ns laser (used as a pump laser for dye laser and fs, ps Ti-sapphire lasers)

- \star ∼mm length and ∼µm thickness
- * multiple reflections by two polished faces
- * temperature-controlled
- e.g. InGaP, PbCdSe, PbSnTe, InGaAs, PbSSe, etc.

* Pulsed operations

Q-switching (for ns laser)

"… maintain cavity in nonresonant condition with population inversion building up, then allow resonant condition only for a short period of time producing a short laser pulse…"

- Mode-Locking (for ps, fs lasers)
	- **"…** lock phases of multiple longitudinal modes by optical modulators operated at the frequency of mode separation f=2d/c**…"**

$$
v = v_0 \xrightarrow{f} v = v_0
$$
, $v_0 \pm f \xrightarrow{f} v_0$, $v_0 \pm f$, $v_0 \pm 2f$ $\xrightarrow{f} v_0 \pm mf$

Active ML (AO, EO modulators), Passive ML (saturable absorber), Kerr lens ML (KLM), regenerative ML...

Extension of wavelength range

Use of nonlinear crystals: KDP, BBO, LiNbO₃, AgGaS₂, etc.

Harmonic generations:

^ω**0 0 0 2 , 3 ,...** ^ω ωβ **,** γ 1st hyperpolarizability (χ(2)) 2nd hyperpolarizability (χ(3)) **(2) (3) 2 3 2 113(2 22 233 31) 1 sin (1 cos) 23 1 sin (sin sin) 1 1.... 2 623: (2) () " "4si) n4((3)** *3E term A t A t "second harmonic"E termE Ephase matching conditi EEonA t A t t third harmonic k kA tkk k*µµ β γ ωωωωωµ ωµ ωωωω=+ =+ ++ + α =∝ =− ∝= [−] += + =G GG G G **111 () () ()** ωωω ⁺ ⁺ *^k ^k* G G

Sum and difference frequency generations:

Applications of Lasers: Laser Spectroscopy

 $\bm{\beta}$

* Hyper Raman Spectroscopy

hyperpolarizability

 $2\tilde{\nu}_{_0}$

Hyper Rayleigh scatterin g **0 : 2**ν *allowed only for molecules* **(** *with no inversion symmetry* **)**

 $2\tilde{v}_{_{0}}$ $\pm \tilde{v}_{_{HR}}$: Hyper Raman Scattering

ijk $\Gamma(\nu') \times \Gamma(\beta_{ijk}) \times \Gamma(\nu'') \supset A_1$

- IR active modes: HR active
- Molecules w/ inversion symmetry: only u modes are HR active

* Stimulated Raman Spectroscopy

With High power pulse lasers, parametric conversions between incident light and Stokes or anti-Stokes lines occur \rightarrow Incident and SR or ASR intensities are comparable

→ used for wavelength extension "Raman laser **"**observed only for strongest Raman bands

 $\nu = \nu_{0} \pm n\nu \quad (-$: stokes; + : antistokes shift),

 $four-wave$ $mixing$: $\omega_{_4} = \omega_{_1} + \omega_{_2} \pm \omega_{_3}$

 $\overline{(SSR)}\ \vec{k}_{_L}+\vec{k}_{_S}=\vec{k}_{_L}+\vec{k}_{_S}$ (automatic); $(SASR)2\vec{k}_{_L}=\vec{k}_{_a}+\vec{k}_{_S}$

* Coherent Anti-Stokes Raman Scattering (CARS) High sensitivity, high spatial resolution spectroscopic technique

"four-wave mixing **"**

$$
\begin{array}{ccc}\n & k_1 \\
& k_2 \\
& k_1 \\
& k_1 \\
& k_1\n\end{array}
$$

vib rot v_1 : fixed $|v_2|$: variable to match $v_1 - v_2 = v$ $=$ $V_{\scriptscriptstyle{vib-}}$ $cf.$ $v_{3,s} = 2v_2 - v_1 = v_2 - (v_1 - v_2)$ @ $v_1 - v_2 = v_{i,mol}$ "CSRS" $v_{3,as} = 2v_1 - v_2 = v_1 + (v_1 - v_2)$ @ $v_1 - v_2 = v_{i,mol}$ "CARS" $2k_{\iota}(\nu_{1}) = k(\nu_{3}) + k(\nu_{2})$ G GG

* Laser Stark Spectroscopy: **"**Stark effect **"**

Stark effect splits rotational levels according to their $\left\vert \mathsf{M}\right\vert$. values and applied voltages $\boldsymbol{E}_{_{\textit{start}}} = \boldsymbol{\mu}^2\text{E}^2(\boldsymbol{c}_{_{\textbf{1}}} - \boldsymbol{c}_{_{\textbf{2}}}\boldsymbol{M}_{\textbf{\textit{J}}}^2)$

n Η Example: FNO, ^qP₇(8) of ν₁

* Two-photon and multiphoton absorption

Selection rule: **"**two-photon absorption**"**

 e^{y} f^{x} f^{x} g^{y} g^{y} g^{y} g^{y} g^{y} g^{y} g^{y} g^{y} $if \Gamma(\psi''_{ev}) = A_1,$ e^{y} **1** $\left(\begin{array}{c} \sim \\ \sim \\ i \end{array} \right)$ $\left(\begin{array}{c} \sim \\ i \end{array} \right)$ e^{y} $\left(\frac{y}{y}\right)$ $\frac{1}{y}$ $\Gamma(\psi'_{ev})\!\times\!\Gamma(\boldsymbol{S}_{ij=x\chi,xy,...})\!\times\!\Gamma(\psi''_{ev})\!\supset\! \boldsymbol{A}_{1}$ $\Gamma(\psi'_{ev}) = \Gamma(\mathcal{S}_{ij=xx,xy,...}) = \Gamma(\alpha_{ij})$ $or \Gamma(\psi'_e) \times \Gamma(\psi'_v) = \Gamma(\alpha_{\psi})$

Two-photon fluorescence excitation

* Multiphoton dissociation (MPD) and isotope separation

 Isotope separation MPD of single isotope by using isotope shift of vibrational frequency

MPD of ³²SF₆ - depletion

* Light Detection and Ranging (LIDAR)

With pulse laser, determine the concentrations of objects (aerosols, atmospheric molecules, etc) as a function of distance in tropo- and strato-spheres by measuring return times

* Cavity Ring-Down Spectroscopy (CRDS)

*"*High sensitivity absorption technique: enhance sample length by multiple passes and measure the transmitted intensity as a function of time*…"*

Good for measuring spectra of reaction intermediates

$$
Beer-Lambert law: A = log10(I0/I) = \varepsilon cl
$$

\n→ ln(I₀/I) = αI (α: absorption coefficient)
\n∴ I/I₀ = exp(-αI) = exp(-αct₁)
\n"light intensity decays exponentially as cell length I or travel time t"
\n∴ from decay rates → determine α(v) "absorption spectrum"

* Femtosecond Spectroscopy

"…With fs pump-probe pulses, ultrafast molecular motions and transient reaction intermediates can be directly monitored**…"**

Time delay (ps)

Example 2: Direct Observation of Vibrational Motions of I₂ *fs* pump \mathbf{I} (\mathbf{D} \mathbf{B} $\mathbf{\Pi}$) (**11011010** \mathbf{a} *fs* probe *g g* $I_2(X^1\Sigma_g^+)$ $\xrightarrow{fs \; pump}\mathcal{I}_2(B^3\Pi_{\mathfrak{n}^+})$ (wavepcket) $\xrightarrow{fs \; probe}\mathcal{I}_2(f\mathbf{0}_g^+) \Rightarrow h$ **3** $\mathcal{L}(X^1\Sigma_g^+) \longrightarrow \mathcal{L}_2(B^3\Pi_{0^+_m})$ (wavepcket) \longrightarrow $\mathcal{L}_2(f0^+_s) \Longrightarrow$ $h\nu$ (Σ^+) \longrightarrow $I_2(B^3\Pi^-)$ (wavepcket) \longrightarrow $I_3(F0^+)$ \Longrightarrow

- * Spectroscopy of molecules in supersonic jets
- Supersonic jet: expansion from high to low pressure regions

hole diameter >> mean free path \rightarrow directional flow \rightarrow collision-less molecular flow

cold molecular beam (T_{trans} ∼1K, T_{rot} ∼10K, T_{vib} ∼50K)

High Mach number:
$$
M = \frac{mass \ flow \ speed(u)}{speed \ of \ sound(a)}, \ a = \left(\frac{\gamma k T_{trans}}{m}\right)^{1/2}
$$

 $\gamma = C_p / C_v$

"Due to adiabatic cooling, weakly bound clusters are formed **"**

Fluorescence excitation spectroscopy: on clusters

"… perform high resolution spectroscopy on individual cluster isomers by measuring fluorescence as a function of excitation wavelength*…"*

Single vibronic level fluorescence spectroscopy

Excite uncongested, single vibronic level and detect its pure fluorescence in collision-free conditions \rightarrow determine PES of ground state very accurately

Torsional PES : $V(\phi)$ = $\left[1070(1-\cos2\phi)-275(1-\cos4\phi)+7(1-\cos6\phi)\right]$ *Minimum Energy* \varnothing $\phi = 0^{\circ}$ " planar due to conjugation **"** \rightarrow Minimum Energy $\oslash \phi = 0^{\circ}$ " planar due to conjugation

Zero kinetic energy (ZEKE) photoelectron spectroscopy

Detect only zero-kinetic Energy photoelectrons via state-selective ionization and delayed pulsed field extraction

"High resolution spectroscopy on excited neutral and cationic states"

ZEKE spectrum of 1,4-difluorobenzene

